Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing.

نویسندگان

  • Qiang Gao
  • Xing Li
  • Guo-Hong Ning
  • Kai Leng
  • Bingbing Tian
  • Cuibo Liu
  • Wei Tang
  • Hai-Sen Xu
  • Kian Ping Loh
چکیده

The strong π-π interactions in the stacking layers of two-dimensional covalent organic frameworks (2D-COFs), together with rotationally labile imine linkages, make most of the solid state imine-linked COFs non-fluorescent due to fluorescence quenching processes. Here, we report the successful synthesis of highly photoluminescent imine-based 2D-COFs by integrating a non-planar building unit with a pyrene-based unit and transforming the COF into spherical, sub-micron particles. High photoluminescence quantum yields (PLQY) were achieved with COF sub-micron particles dispersed in organic solvents. The as-prepared COF sub-micron particles can be used as a chemical sensor for the detection of explosive chemicals, with high sensitivity and selectivity (up to ppm level).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions

Nowadays metal-organic frameworks with multiple luminescent centers are very fascinating as multifunctional luminescent material because of their luminescence properties, which could be systematically tuned by deliberate use of organic ligands and metal ions. In this research, we explored a microporous mixed-ligand MOF for highly selective and sensitive detection of metal ions. A two-fold inter...

متن کامل

A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks.

Developing synthetic methodology to crystallize extended covalent structures has been an important pursuit of reticular chemistry. Here, we report a homogeneous synthetic route for imine covalent organic frameworks (COFs) where crystallites emerge from clear solutions without forming amorphous polyimine precipitates. The key feature of this route is the utilization of tert-butyloxycarbonyl grou...

متن کامل

On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions.

Surface covalent organic frameworks (SCOFs), featured by atomic thick sheet with covalently bonded organic building units, are promised to possess unique properties associated with reduced dimensionality, well-defined in-plane structure, and tunable functionality. Although a great deal of effort has been made to obtain SCOFs with different linkages and building blocks via both "top-down" exfoli...

متن کامل

Simultaneous construction of two linkages for the on-surface synthesis of imine-boroxine hybrid covalent organic frameworks.

The orthogonality between the Schiff base reaction and the boronic acid dehydration reaction is explored during the on-surface synthesis process. By activating the above two reactions in one-step and employing asymmetrical substituted monomers and the 3-fold symmetric monomer 1,3,5-tris(4-aminophenyl)benzene (TAPB), highly ordered imine-boroxine hybrid single-layered covalent organic frameworks...

متن کامل

Chemical Conversion of Linkages in Covalent Organic Frameworks.

The imine linkages of two layered, porous covalent organic frameworks (COFs), TPB-TP-COF ([C6H3(C6H4N)3]2[C6H4(CH)2]3, 1) and 4PE-1P-COF ([C2(C6H4N)4][C6H4(CH)2]2, 2), have been transformed into amide linkages to make the respective isostructural amide COFs 1' and 2' by direct oxidation with retention of crystallinity and permanent porosity. Remarkably, the oxidation of both imine COFs is compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 54 19  شماره 

صفحات  -

تاریخ انتشار 2018